

Ten years of reactive transport modeling and simulation

Jocelyne Erhel, Michel Kern

INRIA

Journées Scientifiques du GNR MoMaS CIRM, Marseille November 2–4, 2011

Motivations

Importance of chemical phenomena in various applications

- Alteration chimique des composants du stockage
- Séquestration du CO2

Erhel-Kern (INRIA)

< ∃⇒

< □ > < □ > < □ > < □ >

2) Formulation and numerical methods

Erhel-Kern (INRIA)

イロト イポト イヨト イヨト

Transport with chemical reactions

Mobile species

$$\omega \partial_t c_i + \underbrace{\nabla \cdot (\mathbf{u} c_i - \mathbf{D} \nabla c_i)}_{L(c)} = \sum_{j=1}^{N_R} v_{ij} R_j(c_1, \dots, c_{N_S}), \quad i = 1, \dots, N_S$$

- c_i : concentration of *i*th species [mol/l]
- D Dispersion diffusion tensor [m²/s]
- R_j reaction term for *j*th reaction

- ω : porosity [–]
- u Darcy velocity [m/s]
- *v_{ij}* stoichiometric coeff.

Transport with chemical reactions

Mobile species

$$\omega \partial_t c_i + \underbrace{\nabla \cdot (\mathbf{u} c_i - \mathbf{D} \nabla c_i)}_{L(c)} = \sum_{j=1}^{N_R} v_{ij} R_j(c_1, \dots, c_{N_S}), \quad i = 1, \dots, N_S$$

- c_i : concentration of *i*th species [mol/l]
- **D** Dispersion diffusion tensor $[m^2/s]$
- R_j reaction term for *j*th reaction

- ω : porosity [–]
- u Darcy velocity [m/s]
- *v_{ij}* stoichiometric coeff.

Condense transport solver, one time step

 $\boldsymbol{c}(t+\Delta t)=\Psi_T(\boldsymbol{R},\boldsymbol{c}(t))$

Mass balance for immobile species

$$\rho_{s}\partial_{t}\overline{c}_{i} = \sum_{j=1}^{N_{R}} v_{ij}R_{j}(c_{1},\ldots,c_{N_{S}},\overline{c}_{1},\ldots,\overline{c}_{\overline{N}_{S}}), \quad i=1,\ldots,\overline{N}_{S}$$

Modeling general equilibrium models

$$\sum_{j=1}^{N_s+\bar{N}_s} v_{ij} \mathbf{Y}_j \leftrightarrows \mathbf{0}, \quad i=1,\ldots,N_r$$

Mass action law $v \log \begin{pmatrix} c \\ \bar{c} \end{pmatrix} + \log K = 0$ Mass conservation $v^T \begin{pmatrix} c \\ \bar{c} \end{pmatrix} = \begin{pmatrix} T \\ W \end{pmatrix}$ $N_s + \bar{N}_S$ species , N_r reactions.

System of non-linear equations T known from transport, W imposed

Modeling general equilibrium models

$$\sum_{j=1}^{N_s+\bar{N}_s} v_{ij} \mathbf{Y}_j \leftrightarrows \mathbf{0}, \quad i=1,\ldots,N_r$$

Mass action law
$$v \log \begin{pmatrix} c \\ \bar{c} \end{pmatrix} + \log K = 0$$

Mass conservation $v^T \begin{pmatrix} c \\ \bar{c} \end{pmatrix} = \begin{pmatrix} T \\ W \end{pmatrix}$

 $N_s + \bar{N}_S$ species , N_r reactions.

System of non-linear equations T known from transport, W imposed

Mineral reactions

Dissolution of solid, precipitation of aqueous species. Reactions with threshold : which species appear unknown a priori.

Solubility product
$$\Pi = \log K_{\rho} + S_{\rho} \log c$$
, $\begin{cases} \rho = 0 \\ \Pi = 0 \end{cases}$

$$p = 0$$
 if $\Pi < 0$
 $\Pi = 0$ otherwise

Take concentration logarithms as main unknowns Use globalized Newton's method (line search, trust region).

Take concentration logarithms as main unknowns Use globalized Newton's method (line search, trust region).

Methods for minerals

- Standard procedure : combinatorial search
- Reformulate as complementarity problem
- Interior point algorithm (Saaf et al. ('96), MK (05))
- Also semi-smooth Newton (Kräutle)

Take concentration logarithms as main unknowns Use globalized Newton's method (line search, trust region).

Methods for minerals

- Standard procedure : combinatorial search
- Reformulate as complementarity problem
- Interior point algorithm (Saaf et al. ('96), MK (05))
- Also semi-smooth Newton (Kräutle)

Role of chemical model

Given totals T (and W, known), split into mobile (C) and immobile (F) total concentrations

Take concentration logarithms as main unknowns Use globalized Newton's method (line search, trust region).

Methods for minerals

- Standard procedure : combinatorial search
- Reformulate as complementarity problem
- Interior point algorithm (Saaf et al. ('96), MK (05))
- Also semi-smooth Newton (Kräutle)

Role of chemical modelChemistry solverGiven totals T (and W, known), split
into mobile (C) and immobile (F) total
concentrations $H\begin{pmatrix} \log c \\ \log \bar{c} \end{pmatrix} = \begin{pmatrix} T \\ W \end{pmatrix}$
 $F = \Psi_C(T, W)$

Э

▶ < 글 > < 글 >

2 Formulation and numerical methods

Erhel-Kern (INRIA)

イロト イポト イヨト イヨト

Eliminate unkown equilibrium reaction rates by introducing mobile and immobile totals.

$$\phi \partial_t \mathbf{C} + \partial_t \mathbf{F} + L\mathbf{C} = 0$$
 with $\mathbf{F} = \Psi_c(\mathbf{C} + \mathbf{F})$

Eliminate unkown equilibrium reaction rates by introducing mobile and immobile totals.

$$\phi \partial_t \mathbf{C} + \partial_t \mathbf{F} + L \mathbf{C} = 0$$
 with $\mathbf{F} = \Psi_c (\mathbf{C} + \mathbf{F})$

Fixed point (aka OS) Yeh-Tripathi, Carrayrou et al., Carrera et al.

- + easy to program, code reuse
- not robust, small time steps

Eliminate unkown equilibrium reaction rates by introducing mobile and immobile totals.

$$\phi \partial_t \mathbf{C} + \partial_t \mathbf{F} + L \mathbf{C} = 0$$
 with $\mathbf{F} = \Psi_c (\mathbf{C} + \mathbf{F})$

Fixed point (aka OS) Yeh-Tripathi, Carrayrou et al., Carrera et al.

- + easy to program, code reuse
- - not robust, small time steps

Direct subsitution Lichtner et al., Saaltink et al.

- + accurate, robust,
- - difficult to code, large non-linear system

4 王

Eliminate unkown equilibrium reaction rates by introducing mobile and immobile totals.

$$\phi \partial_t \mathbf{C} + \partial_t \mathbf{F} + L \mathbf{C} = 0$$
 with $\mathbf{F} = \Psi_c (\mathbf{C} + \mathbf{F})$

Fixed point (aka OS) Yeh-Tripathi, Carrayrou et al., Carrera et al.

- + easy to program, code reuse
- - not robust, small time steps

Direct subsitution Lichtner et al., Saaltink et al.

- + accurate, robust,
- - difficult to code, large non-linear system
- Others Nonlinear conjugate gradient (Bouillard, Herbin, Montarnal)
 - Elimination technique (Knabner, Kraütle, Hoffmann)

De Dieuleveult, JE, MK (JCP '09)

CC formulation, explicit chemistry

$$\begin{cases} \phi \partial_t \mathbf{C} + \partial_t \mathbf{F} + L\mathbf{C} = 0 \\ H \begin{pmatrix} \log \mathbf{c} \\ \log \mathbf{\bar{c}} \end{pmatrix} - \begin{pmatrix} \mathbf{C} + \mathbf{F} \\ \mathbf{W} \end{pmatrix} = 0 \\ \mathbf{F} - \mathbf{F} \begin{pmatrix} \log \mathbf{c} \\ \log \mathbf{\bar{c}} \end{pmatrix} = 0. \end{cases}$$

Coupled system is index 1 DAE

$$K\frac{d\mathbf{y}}{dt} + f(\mathbf{y}) = 0$$

Use standard DAE software

C. de Dieuleveult (Andra thesis),

- + Chemistry function, no chemical solve
- Intrusive approach (chemistry not a black box)
- Precipitation not easy to include (semi-smooth Newton OK)

$$\begin{cases} \boldsymbol{C}^{n+1} = \Psi_T \left(\boldsymbol{\phi} \frac{\boldsymbol{F}^n - \boldsymbol{F}^{n+1}}{\Delta t}, \boldsymbol{C}^n \right) \\ \boldsymbol{F}^{n+1} = \Psi_C (\boldsymbol{C}^{n+1} + \boldsymbol{F}^{n+1}) \end{cases}$$

$$\begin{cases} C^{n+1} = \Psi_T \left(\phi \frac{F^n - F^{n+1}}{\Delta t}, C^n \right) & \text{uncoupled} \\ F^{n+1} = \Psi_C (C^{n+1} + F^{n+1}) \end{cases}$$

$$C^{n+1} = \Psi_T \left(\phi \frac{F^n - F^{n+1}}{\Delta t}, C^n \right) \quad \text{uncoupled}$$
$$F^{n+1} = \Psi_C (C^{n+1} + F^{n+1})$$

Can be solved by block Gauss Seidel or by Newton's method

$$C^{n+1} = \Psi_T \left(\phi \frac{F^n - F^{n+1}}{\Delta t}, C^n \right) \quad \text{uncoupled}$$
$$F^{n+1} = \Psi_C (C^{n+1} + F^{n+1})$$

Can be solved by block Gauss Seidel or by Newton's method

Residual computation

- Apply Ψ_T : solve transport for each species,
- Apply Ψ_C : solve chemistry for each grid cell.

- + Non-intrusive approach
- + Precipitation can be included
- One chemical equilibrium solve for each function evaluation

Solution by Newton-Krylov method

- Solve the linear system by an iterative method (GMRES)
- Requires only jacobian matrix by vector products, Jacobian not stored
- Keep transport and chemistry as black-boxes (up to Jacobian computation)

Used for CFD, shallow water, radiative transfer and reactive transport (Hammond, Valocchi, Lichtner, Adv. Wat. Res. 05)

Solution by Newton-Krylov method

- Solve the linear system by an iterative method (GMRES)
- Requires only jacobian matrix by vector products, Jacobian not stored
- Keep transport and chemistry as black-boxes (up to Jacobian computation)

Used for CFD, shallow water, radiative transfer and reactive transport (Hammond, Valocchi, Lichtner, Adv. Wat. Res. 05)

Inexact Newton

- Approximation of the Newton's direction $||f'(x_k)d + f(x_k)|| \le \eta ||f(x_k)||$
- Choice of the forcing term $\eta = \gamma \|f(x_k)\|^2 / \|f(x_{k-1})\|^2$ (Kelley, Eisenstat and Walker)
 - Keep superlinear convergence (locally)
 - Avoid oversolving the linear system

L. Amir's thesis, Amir, MK (Comp. Geosci. 09)

글 에 에 글 어

Inria_

Preconditioning

- Essential for good linear performance
- Difficult for matrix free formulation
- Simplified, 1 species model, with explicit sorption (with A. Taakili)

Algebraic elimination of mobile conc. equivalent to Schur complement of block Gauss–Seidel precond.

< E

Preconditioning

- Essential for good linear performance
- Difficult for matrix free formulation
- Simplified, 1 species model, with explicit sorption (with A. Taakili)

Algebraic elimination of mobile conc. equivalent to Schur complement of block Gauss–Seidel precond.

Can show eigenvalues of preconditioned op. bounded away from 0, independent of *h*, but convergence of GMRES not determined by eigenvalues Field of values analysis ?

2) Formulation and numerical methods

Erhel-Kern (INRIA)

イロト イポト イヨト イヨト

The setup

- Designed by J. Carrayrrou, M. Kern, P. Knabner
- Concentrate on numerical difficulties : simple geometry, « abstract » chemistry
- 3 levels of chemistry (sorption, equilibrium minerals, kinetics)

The benchmark

- Results from 6 groups, awards to 4 groups
- International workshop (Ph. Ackerer, Strasbourg, Jan. 2008)
- Special issue in « Computational Geosciences » (ed. Ph. Ackerer), 6 papers + intro + synthesis

	Loc. of peak	S conc.
GDAE1D	0.0175	0.966
NK	0.0167	0.742
Erlangen	0.0167	0.852
Specy	0.0158	0.968
HYTEC	0.0170	0.286
MIN3P	0.0175	0.725
Reference	0.0173	0.985

GDAE1D more accurate, but slower

Ínia-

2D benchmark results

One species among 13 at time t=1000

Erlangen result with very fine mesh

GDAE result with coarse mesh Numerical dispersion due to the coarse mesh but accurate results

2D Andra test case

Chemical description

- Injection of alcaline water (NaOH) into a porous medium containing quartz (SiO2)
- Dissolution of quartz : $H_4SiO_4 \implies SiO_2 + 2H_2O$
- Aqueous reactions : $H_4SiO_4 \rightleftharpoons H_3SiO_4^- + H^+$, $H_2O \rightleftharpoons H^+ + OH^-$
- Sodium is a tracer

Geometry and transport conditions

- Rectangular domain of size 5mx3.5m
- Injection at time t = 0 of NaOH at point (1, 1.75)
- Advection ($v = 5.710^{-7}$ m/s) and dispersion
- Duration 30 days

CO2 sequestration test case

Minimal chemical system that still "looks" realistic for CO₂ storage

Dissolution of CO_2 in water, dissolution of calcite. Gas assumed immobile (capillary trapping), decouples flow from reactive transport.

Chemical system

•
$$H_2O \Longrightarrow H^+ + OH^-$$

•
$$H_2O + CO_{2(aq)} \rightleftharpoons HCO_3^- + H^+$$

- $CO_{2(g)} \rightleftharpoons CO_{2(aq)}$
- $CaCO_3 + H^+ \rightleftharpoons Ca_2^+ + HCO_3^-$

water dissociation

dissociation of aqueous CO₂

gas dissolution

Dissolution of calcite

t = 0

Ínnia

< Ξ

A B > A
 B > A
 B
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A

t = 400 years

	advantured.	
10	001	0
u	u	u-

3

< Ξ

t = 800 years

· · ·	Non-service of	Personal and a second s
11	.71	0_
-		

3

< □ > < □ > < □ > < □ >

t = 1200 years

· · ·	Non-service of	Personal and a second s
11	.71	0_
-		

3

< ≣

< □ > < 🗇

▶ ★ 문 ▶

t = 1600 years

· · · ·	Non-service of	
11	.71	<u>a</u> _

글 🕨 🖌 글

t = 2000 years

· / .	No. of Concession, Name	And a state of the
-		

글 🕨 🖌 글

t = 2400 years

about the factor	-
Ingia	
uuu	_

3

< Ξ

t = 2800 years

· · ·	Non-service of	Personal and a second s
11	.71	0_
-		

3

< Ξ

t = 3200 years

· · ·	Non-service of	Personal and a second s
11	.71	0_
-		

3

< Ξ

A B > A
 B > A
 B
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A

t = 3600 years

	advantured.	
10	001	0
u	u	u-

3

< □ > < □ > < □ > < □ >

t = 4000 years

Ingia	
araa	

3

A B > A
 B > A
 B
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A

t = 5000 years

Ingia	
araa	

3

< □ > < □ > < □ > < □ >

t = 7000 years

· / .	No. of Concession, Name	And a state of the
-		

3

< □ > < □ > < □ > < □ >

t = 10000 years

· / .	No. of Concession, Name	
-		

3

< Ξ

A B > A
 B > A
 B
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A
 C > A

	h		h/2		h/4		h/8	
	NI	LI	NI	LI	NI	LI	NI	LI
No prec.	8	42	8	76	10	105	10	177

Mesh dependance : adaptive forcing term

NI : # nonlinear iters, NLI : total # linear iters.

	h		h/2		h/4		h/8	
	NI	LI	NI	LI	NI	LI	NI	LI
No prec.	8	42	8	76	10	105	10	177
BGS	8	23	7	24	7	22	8	25

Mesh dependance : adaptive forcing term

NI : # nonlinear iters, NLI : total # linear iters.

	h		h/2		h/4		h/8	
	NI	LI	NI	LI	NI	LI	NI	LI
No prec.	8	42	8	76	10	105	10	177
BGS	8	23	7	24	7	22	8	25
Elimination	5	15	5	15	5	15	5	15

Mesh dependance : adaptive forcing term

NI : # nonlinear iters, NLI : total # linear iters.

Work in progress

Reduction of CPU time in DAE methods

Work in progress

- Reduction of CPU time in DAE methods
- Parallel software

< E

Work in progress

- Reduction of CPU time in DAE methods
- Parallel software
- Experimental comparison with SNIA method

Work in progress

- Reduction of CPU time in DAE methods
- Parallel software
- Experimental comparison with SNIA method
- Reactive models with kinetics and precipitation-dissolution

Work in progress

- Reduction of CPU time in DAE methods
- Parallel software
- Experimental comparison with SNIA method
- Reactive models with kinetics and precipitation-dissolution

Work in progress

- Reduction of CPU time in DAE methods
- Parallel software
- Experimental comparison with SNIA method
- Reactive models with kinetics and precipitation-dissolution

Future work

• Species appearance / disappearance as complementarity problem

Work in progress

- Reduction of CPU time in DAE methods
- Parallel software
- Experimental comparison with SNIA method
- Reactive models with kinetics and precipitation-dissolution

Future work

- Species appearance / disappearance as complementarity problem
- Improving the substitution approach

Work in progress

- Reduction of CPU time in DAE methods
- Parallel software
- Experimental comparison with SNIA method
- Reactive models with kinetics and precipitation-dissolution

Future work

- Species appearance / disappearance as complementarity problem
- Improving the substitution approach
- Exploring mesh refinement strategies

Work in progress

- Reduction of CPU time in DAE methods
- Parallel software
- Experimental comparison with SNIA method
- Reactive models with kinetics and precipitation-dissolution

Future work

- Species appearance / disappearance as complementarity problem
- Improving the substitution approach
- Exploring mesh refinement strategies
- Two phase flow with chemistry